PEMILIHAN PORTOFOLIO PROYEK DENGAN MEMPERTIMBANGKAN RESIKO FINANSIAL

Yogi Yusuf Wibisono 1, Dr. Ir. Kadarshah Suryadi 2

1 Jurusan Teknik Industri Universtias Katolik Parahyangan
Jalan Ciumbuleuit 94 Bandung
Email: yogi@home.unpar.ac.id
2 Jurusan Teknik Industri Institut Teknologi Bandung
Jalan Ganesha 10 Bandung
Email: kadarshah@bdg.centria.net.id

Abstrak
Pemilihan portofolio proyek merupakan aktivitas periodik dalam memilih usulan proyek baik proyek baru maupun proyek yang sedang dijalankan sehingga tujuan organisasi dapat dicapai tanpa melewati pembatas yang ada. Salah satu model yang paling banyak digunakan dalam membantu pemilihan portofolio proyek adalah model finansial. Tiap proyek akan diestimasi nilai finansialnya, kemudian diurutkan berdasarkan nilai finansial tersebut. Nilai estimasi yang diperoleh dari model finansial berupa nilai tunggal atau deterministik, sementara proyek itu sendiri mengandung banyak resiko sehingga hasilnya dapat berbeda dengan yang diestimasi. Dalam makalah ini akan dibahas mengenai penggunaan model finansial yang diintegrasikan dengan analisis resiko dengan bantuan simulasi Monte Carlo pada pemilihan portofolio proyek. Hasil yang akan diperoleh dari penelitian ini adalah nilai harapan finansial dan simpangannya. Kedua informasi tersebut digunakan sebagai kriteria dalam pemilihan portofolio proyek.

Kata Kunci: proyek, portofolio proyek, pemilihan portofolio proyek, resiko, simulasi Monte Carlo.

1. Pendahuluan

Analisis portofolio proyek sudah menjadi sama pentingnya dengan perencanaan portofolio bisnis yang telah berkembang pada tahun 70-an dan 80-an (Archer, 1999). Manajemen portofolio dan penyusunan prioritas proyek sangat penting dalam mencapai kesuksesan bisnis (Cooper, 1999) karena:

a. Manajemen portofolio berkaitan dengan penyusunan pilihan-pilihan yang bersifat strategis.
b. Produk dan teknologi baru yang dipilih saat ini akan menentukan bisnis pada 5 tahun mendatang.
c. Manajemen portofolio berkaitan dengan pengalokasian sumber.
d. Manajemen portofolio menangani isu-isu penting dalam menyeimbangkan sumber yang tersedia dengan jumlah proyek.

Begitu pentingnya pemilihan portofolio proyek dalam mencapai kesuksesan bisnis, maka perusahaan harus melakukan aktivitas tersebut yang dapat memberikan performansi portofolio proyek yang baik, yaitu: jumlah proyek yang tepat, pelaksanaan proyek tepat waktu, portofolio berisi proyek yang bernilai tinggi, adanya kesimbangan dari proyek-proyek yang terpilih, portofolio proyek yang
terpilih sejalan dengan strategi bisnis. Performansi portofolio yang baik dapat dicapai melalui keterlibatan manajemen dalam pemilihan portofolio proyek, pengembangan model pemilihan portofolio proyek yang eksplisit dan formal, penggunaan model yang mempunyai aturan dan prosedur yang jelas, penggunaan model secara konsisten, dan penanganan seluruh proyek sebagai portofolio dengan mempertimbangkan dan membandingkan seluruh proyek (Cooper, 1999). Perusahaan yang ingin tetap kompetitif dengan memilih proyek-proyek yang tepat harus menjalankan manajemen portofolionya dengan memperhatikan faktor-faktor tersebut.

Walaupun keterlibatan manajemen mempunyai dampak terhadap pencapaian performansi portofolio, tetapi dampaknya itu tidak sebesar dengan kualitas model pemilihan portofolio yang digunakan (Cooper, 1999). Perusahaan yang manajemennya kurang terlibat dalam proses pemilihan manajemen portofolio masih dimungkinkan untuk mencapai hasil yang baik, jika perusahaan tersebut menggunakan model pemilihan portofolio yang tepat.

Banyak model yang dapat digunakan untuk mengestimasi, mengevaluasi, dan memilih portofolio proyek. Tetapi tidak ada satu modelpun yang dapat membantu dalam mencapai seluruh performansi portofolio di atas. Salah satu model yang paling banyak digunakan dalam pemilihan portofolio proyek adalah model finansial (Cooper, 2002). Dalam makalah ini akan dibahas menggunakan model finansial yang diintegrasikan dengan analisis resiko dengan simulasi Monte Carlo dalam memilih portofolio proyek.

2. Pemilihan Portofolio Proyek

Proyek dapat didefinisikan sebagai berikut (Archer, 1999):

"A complex effort, usually less than three years in duration, made up of interrelated tasks, performed by various organizations, with a well-defined objective, schedule, and budget"

Attrib-attrib yang mengkarakterisasi proyek (Meredith, 2000) adalah sebagai berikut:
1. **Tujuan**, proyek merupakan aktivitas pada satu waktu dengan tujuan yang jelas.
2. **Siklus hidup**, proyek mempunyai siklus hidup — muncul, berkembang, mencapai puncak, menurun, dan berakhir.
3. **Keterkaitan**, proyek sering berinteraksi dengan proyek lainnya yang sedang dijalankan secara simultan.
4. **Keunikan**, setiap proyek mempunyai beberapa elemen yang unik. Walaupun banyak proyek yang mirip, tetapi tidak ada dua proyek yang benar-benar sama sehingga tidak dapat diperlakukan sebagai aktivitas rutin.
5. **Konflik**, proyek-proyek bersaing untuk mendapatkan sumber.

Portofolio proyek didefinisikan sebagai berikut (Archer, 1999):

"A group of projects that are carried out under the sponsorship and/or management of a particular organization"

Pemilihan portofolio proyek didefinisikan sebagai berikut (Archer, 1999):

"The periodic activity involved in selecting a portfolio, from available project proposals and projects currently underway, that meets the organization's stated objectives in a desirable manner without exceeding available resources or violating other constraints"

Aktivitas pemilihan proyek merupakan aktivitas periodik pengevaluasian dan pemilihan proyek yang baru maupun yang sedang berlangsung untuk mengoptimasi tujuan dengan tidak melewati pembatas yang ada. Proyek-proyek yang terpilih membentuk suatu kumpulan proyek berupa portofolio proyek. Dalam aktivitas ini tidak mengoptimasi individu proyek, tetapi kumpulan dari proyek.

3. Analisis Keuangan

Analisis keuangan meliputi estimasi waktu dan besarnya aliran kas. Hasil estimasi ini digunakan untuk menghitung NPV. Dalam tahap ini estimasi NPV bersifat deterministik, belum memperhitungkan variabilitas NPV yang disebabkan oleh variabilitas aliran kas.

Estimasi nilai NPV proyek membutuhkan masukan berupa:

a. Panjang evaluasi, banyaknya periode yang akan menjadi pertimbangan dalam perhitungan NPV. Panjang evaluasi meliputi durasi pengembangan proyek ditambah dengan waktu delay pemanfaatan hasil pengembangan proyek dan umur manfaat / penjualan proyek.

b. Pendapatan, berasal dari benefit tiap periode yang dapat diperoleh dari hasil pelaksanaan proyek tersebut. Untuk proyek-proyek yang bersifat perbaikan atau modifikasi misalnya modifikasi produk maka pendapatan yang dihitung adalah perbedaan antara pendapatan yang dapat diperoleh dari hasil modifikasi dan pendapatan yang dapat diperoleh tanpa modifikasi produk.

c. Pengeluaran, berasal dari biaya-biaya yang harus dikeluarkan. Untuk proyek-proyek yang bersifat perbaikan atau modifikasi misalnya modifikasi produk maka pengeluaran yang dihitung adalah perbedaan antara pengeluaran jika ada modifikasi dan pengeluaran jika tanpa modifikasi.

d. Nilai diskon, untuk mendiskontokan nilai dimasa datang ke nilai sekarang.

Hubungan antar elemen di atas dapat digambarkan sebagai berikut:

```
          Pendapatan
               ↓
               ↑
          Pengeluaran
               ↓
               ↑
          Aliran Kas
               ↓
          Panjang Evaluasi
               ↓
          Nilai Diskon
               ↓
          NPV
```

Gambar 1 Hubungan variabel dalam analisis keuangan

Dari hubungan di atas model keuangannya adalah sebagai berikut:

\[
NPV_{ij} = \sum_{t=0}^{n} \frac{A_{ijt}}{k^t}
\]

(1)

\[
A_{ij} = I_{ij} - O_{ij}
\]

(2)

Pemilihan Portofolio Proyek Dengan Mempertimbangkan Resiko Finansial

273
\[A_{jt} = 0 \text{ jika } j > t \]
\[\text{NPV}_j = \text{net present value} \text{ proyek i yang dimulai pada periode j} \]
\[n = \text{panjang evaluasi untuk proyek i.} \]
\[A_{jt} = \text{aliran kas net proyek i pada periode t.} \]
\[I_{jt} = \text{pendapatan proyek i pada periode t.} \]
\[O_{jt} = \text{pengetuanan proyek i pada periode t.} \]
\[k = \text{rate of return yang diinginkan.} \]

4. Simulasi Monte Carlo

Salah satu atribut dari proyek adalah unik, tidak ada dua proyek atau lebih yang benar-benar sama. Keunikan tersebut dapat menyulitkan dalam memprediksi hasil yang dapat dicapai oleh proyek sehingga resiko ataupun ketidakpastian selalu melekat pada proyek. Hasil dari proyek tidak dapat diketahui dengan pasti karena akan terjadi dimasa datang, kecuali dalam bentuk rentang nilai berupa sekumpulan nilai yang mungkin.

Analisis resiko mempertimbangkan sekumpulan nilai yang mungkin dari variabel kunci yang mempengaruhi nilai proyek seperti net present value atau internal rate of return. Melalui analisis resiko nilai proyek tidak diperhitungkan sebagai nilai tunggal, tetapi terdiri dari sekumpulan nilai. Analis dapat menggunakan analisis resiko untuk menghitung expected net present value (ENPV) atau expected internal rate of return (EIRR) dan simpan nilai tersebut. Tingkat resiko tersebut dan tipe pengambil keputusan (risk aversion, neutral, dan seeker) akan mempengaruhi terhadap keputusan yang diambil berkaitan dengan penerimaan atau penolakan proyek.

Kesulitan dalam melakukan analisis resiko mencakup ketersediaan data yang andal, tingginya kompleksitas teknik statistik, dan kebutuhan akan sumber daya manusia dan komputer.

Pada dasarnya analisis resiko melibatkan pemilihan beberapa variabel yang mempunyai variasi nilai secara simultan dimana pengembangan proyek dipengaruhi oleh lebih dari satu sumber resiko. Karena kompleksnya perhitungan resiko, penggunaan perangkat lunak komputer sangat dibutuhkan seperti analisis simulasi Monte Carlo. Melalui simulasi Monte Carlo nilai variabel individu dihasilkan secara random berdasarkan pada distribusi peluang variabel tersebut, dikombinasikan dengan nilai variabel lain yang dihasilkan secara random pula. Kombinasi tersebut digunakan untuk mengestimasi NPV proyek. Proses tersebut diulang terus sampai jumlah yang sangat banyak (ditentukan oleh analis) dan nilai harapan NPV dapat diperoleh bersamaan dengan distribusi peluangnya.

Simulasi Monte Carlo menggunakan sampling random dari tiap distribusi peluang variabel tak pasti dalam model untuk melakukan ratusan atau ribuan iterasi. Tiap distribusi peluang disampling melalui suatu cara yang dapat mereproduksi bentuk distribusi. Distribusi nilai-nilai outcome model merefleksikan peluang nilai-nilai yang dapat terjadi.

Simulasi Monte Carlo menggunakan metode sampling transformasi inverse dengan algoritma pembangkit variabel random sebagai berikut:
1. Bangkitkan \(U \sim U(0, 1) \)
2. Hitung \(X = F^{-1}(U) \)

Ada dua sumber informasi yang dapat digunakan untuk mengkuantifikasi ketidakpastian variabel dalam model, yaitu: data dan opini ahli. Kedua sumber informasi ini digunakan untuk mendapatkan distribusi peluang dari variabel-variabel tak pasti. Analisis resiko hampir selalu melibatkan elemen-elemen yang melibatkan estimasi subjektif dan sangat tidak mungkin mendapatkan data yang dapat menentukan dengan pasti ketidakpastian seluruh variabel dalam model. Analisis resiko pada proyek sangat mengandalkan estimasi subjektif atau opini ahli dalam menentukan peluang atau distribusi peluang variabel tak pasti karena karakteristik proyek yang unik. Distribusi \(\text{triang} \) paling sering digunakan dalam mengestimasi peluang variabel tak pasti (Bedford, 2001). Distribusi \(\text{triang} \) digunakan sebagai tool pemodelan yang kasar dimana range (nilai maksimum – minimum) dan nilai paling mungkin dapat diestimasi. Distribusi ini tidak mempunyai dasar teoritis, properti
statistiknya diturunkan dari bentuk geometrinya. Distribusi \textit{triangle} memberikan fleksibilitas dalam bentuk, dikombinasikan dengan sifat intuitif dalam mendefinisikan parameterinya. Distribusi \textit{triangle} didefinisikan oleh nilai minimum (a), paling mungkin (b), dan maksimum (c).

Distribusi \textit{triangle} mempunyai mempunyai karakteristik sebagai berikut:

a. Fungsi densitas peluang

\[
f(x) = \begin{cases}
\frac{2(x-a)}{(b-a)(c-a)} & \text{jika } a \leq x \leq b \\
\frac{2(x-a)}{(c-a)(c-b)} & \text{jika } b < x \leq c \\
0 & \text{lainnya}
\end{cases} \tag{3}
\]

b. Fungsi distribusi peluang

\[
F(x) = \begin{cases}
0 & \text{jika } x < a \\
\frac{(x-a)^2}{(b-a)(c-a)} & \text{jika } a \leq x \leq b \\
1 - \frac{(c-x)^2}{(c-a)(c-b)} & \text{jika } b < x \leq c \\
1 & \text{jika } c < x
\end{cases} \tag{4}
\]

5. Analisis Resiko

Pemilihan portofolio proyek merupakan pemilihan proyek yang akan dilaksanakan dimasa datang. Dalam pemilihan tersebut banyak mempertimbangkan estimasi-estimasi yang terjadi dimasa datang. Ketidakpastian sering tidak bisa dipisahkan dari perhitungan estimasi yang disebabkan oleh tidak tersedianya informasi yang lengkap, kurang pengalaman, ataupun perubahan-perubahan yang tidak terlihat.

Analisis resiko yang dilakukan pada pemilihan portofolio proyek ditujukan untuk mengantisipasi kejadian-kejadian dimasa datang yang dapat mempengaruhi implementasi dari suatu rencana. Melalui analisis resiko ini dapat diidentifikasi kejadian-kejadian yang mungkin terjadi yang dapat mempengaruhi proyek, peluang terjadinya kejadian tersebut, dan konsekuensi dari kejadian tersebut, serta tindakan-tindakan yang dapat diambil bila kejadian tersebut muncul sehingga kondisi yang tidak diinginkan dapat dikurangi.

Salah satu karakteristik proyek itu adalah unik di mana tidak ada dua proyek yang mempunyai karakteristik yang benar-benar sama. Data masa lalu yang berkaitan dengan satu proyek tidak dapat digunakan untuk menganalisis proyek lain yang akan dilakukan. Sehingga sangat sulit untuk mendapatkan data masa lalu yang dibutuhkan untuk menganalisis proyek. Keterbatasan data yang tersedia memunut peran dari ahli untuk menilai suatu proyek. Dalam makalah ini, analisis resiko akan dilakukan dengan mengandalkan opini ahli sehingga walaupun tidak tersedia data analisis resiko masih dapat dilakukan.

Analisis resiko membutuhkan informasi berkaitan dengan distribusi peluang dari variabel tak pasti model. Teknik yang dapat membantu ahli dalam mengestimasi distribusi peluang adalah dengan disegregasi. Teknik disegregasi memecah permasalahan ke dalam elemen-elemen yang lebih detail sehingga ahli dapat memfokuskan pada elemen-elemen yang dikuasainya. Teknik ini juga dapat membantu ahli dalam menganalisis data tidaknya ketergantungan antar elemen. Permasalahan berkaitan dengan perhitungan \textit{net present value} dapat didekomposisikan ke dalam elemen-elemen.
yang lebih detail misal pengeluaran dalam model kesuatu dapat didecomposisi ke dalam biaya pengembangan, biaya investasi dan biaya operasional untuk memproduksi dan memasarkan hasil proyek. Pendecomposisian masalah ini mempermudah dalam menentukan elemen-elemen atau variabel-variabel tak pasti dan deterministik.

Variabel-variabel tak pasti ini akan diestimasi distribusi peluangnya. Dalam penelitian ini dibatasi pada distribusi triangular sebagai aproksimasi. Distribusi ini sangat mudah penggunaannya dengan hanya mendefinisikan tiga parameter yaitu nilai minimum (a), paling mungkin (b), dan maksimum (c).

Seluruh variabel acak tak pasti dibangkitkan melalui fungsi *inverse* dengan algoritma sebagai berikut:

1. Bangkitkan \(U \sim U[0,1] \)
2. \(X = F^{-1}(u) \)

Fungsi inverse untuk fungsi distribusi peluang *triangular*:

\[
F^{-1}(u) = \begin{cases}
 a + \frac{(b - a)(c - a)u}{c - a} & \text{jika } 0 \leq u \leq \frac{b - a}{c - a} \\
 c - \frac{(c - a)(c - b)(1 - u)}{c - a} & \text{jika } \frac{b - a}{c - a} < u \leq 1
\end{cases}
\]

\(u \) adalah bilangan random yang dibangkitkan dari distribusi uniform \(U[0,1] \).

Jumlah iterasi ditentukan dari tingkat ketelitian dan tingkat kepercayaan yang diinginkan dengan mengikuti prosedur sekuenisial. Tujuan dari prosedur ini adalah mengestimasi rata-rata NPV dengan relatif error \(\gamma (0<\gamma<1) \) dan tingkat kepercayaan 100 (1-\(\alpha \)) persen. Hasil simulasi akan menghasilkan kumpulan nilai NPV dan selanjutnya akan dihitung rata-rata NPV dan standar deviasi NPV tersebut.

Selengkapnya Alur analisis resiko dan pembangkitan variabel acak dapat dilihat pada gambar 2 berikut ini.

6. Contoh Kasus

Suatu perusahaan X; sedang mempertimbangkan beberapa proyek yang dapat dikerjakan. Proyek-proyek tersebut mempunyai karakteristik sebagai berikut:

Proyek 1

Proyek modifikasi produk A, durasi pelaksanaan proyek 2 periode, ukuran proyek 50 (menunjukkan jumlah uang yang dibutuhkan untuk pelaksanaan proyek), kebutuhan sumber daya manusia tiap periode 300 (jumlah jam tenaga kerja yang dibutuhkan), tipe proyek opsional, dan status proyek baru.

Proyek 2

Proyek pengembangan produk baru X, durasi pelaksanaan proyek 3 periode, ukuran proyek 300, kebutuhan sumber daya manusia 1200, tipe proyek opsional, dan status proyek baru.

Proyek 3

Proyek modifikasi produk B, durasi pelaksanaan proyek 1 periode, ukuran proyek 75, kebutuhan sumber daya manusia tiap periode 750, tipe proyek opsional, dan status proyek baru.

Proyek 4

Proyek pengembangan produk baru Y, durasi pelaksanaan proyek 4 periode, ukuran proyek 600, kebutuhan sumber daya manusia 2200, tipe proyek opsional, dan status proyek baru.

Proyek 5
Proyek modifikasi produk C, durasi pelaksanaan proyek 3 periode, ukuran proyek 150, kebutuhan sumber daya manusia 500, tipe proyek opsional, dan status proyek baru. Proyek ini baru dapat dijalankan jika proyek 1 selesai.

Gambar 2 Analisis risiko

Proyek 6
Proyek modifikasi produk D, durasi pelaksanaan proyek 2 periode, ukuran proyek 80, kebutuhan sumber daya manusia 300, tipe proyek opsional, dan status proyek baru.
Proyek 7
Proyek modifikasi produk E, durasi pelaksanaan proyek 3 periode, ukuran proyek 100, kebutuhan sumber daya manusia 400, tipe proyek opsional, dan status proyek sudah melewati satu periode.

Proyek 8
Proyek pengembangan produk baru Z, durasi pelaksanaan proyek 5 periode, ukuran proyek 600, kebutuhan sumber daya manusia 1500, tipe proyek opsional, dan status proyek baru.

Horison perencanaan (jumlah periode yang dipertimbangkan dimana proyek akan dikembangkan) tidak kurang dari durasi pengembangan proyek. Dalam implementasi ini diassumsikan horison perencanaan adalah enam periode. Tiap periode sumber uang yang tersedia sebesar 250 dan sumber jam kerja 3000.

Pendekatan keuangan digunakan dalam pemilihan portofolio proyek ini. Pendekatan ini menyusun prioritas proyek berdasarkan nilai keuangan yaitu rasio ENPV terhadap standar deviasi NPV. Proyek yang bernilai paling tinggi diprioritaskan terlebih dahulu untuk dilaksanakan, selanjutnya jika sumber yang dibutuhkan masih mencukupi proyek yang mempunyai prioritas dibawanya akan dipilih, dan seterusnya sampai sumber yang dibutuhkan tidak mencukupi lagi untuk melaksanakan proyek.

Dalam contoh ini tiap proyek akan mengeluarkan biaya yang terdiri dari biaya pengembangan (biaya proyek itu sendiri) dan biaya selanjutnya sebagai dampak dari implementasi hasil proyek yaitu biaya persiapan, biaya pemasaran dan administrasi, dan biaya produksi; selain itu tiap proyek yang diimplementasikan akan memperoleh pendapatan dari hasil penjualan. Tiap proyek mempunyai beberapa alternatif pengembangan.

<table>
<thead>
<tr>
<th>Alternatif proyek</th>
<th>ENPV</th>
<th>Standar deviasi NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>173,6</td>
<td>31,03</td>
</tr>
<tr>
<td>12</td>
<td>158,6</td>
<td>26,87</td>
</tr>
<tr>
<td>13</td>
<td>146,2</td>
<td>30,98</td>
</tr>
<tr>
<td>14</td>
<td>129,7</td>
<td>30,77</td>
</tr>
<tr>
<td>15</td>
<td>121,1</td>
<td>27,59</td>
</tr>
<tr>
<td>21</td>
<td>1094</td>
<td>246,2</td>
</tr>
<tr>
<td>22</td>
<td>800,1</td>
<td>235,7</td>
</tr>
<tr>
<td>23</td>
<td>894,4</td>
<td>316,9</td>
</tr>
<tr>
<td>24</td>
<td>790,6</td>
<td>257,5</td>
</tr>
<tr>
<td>31</td>
<td>375,2</td>
<td>67,09</td>
</tr>
<tr>
<td>32</td>
<td>377,7</td>
<td>58,55</td>
</tr>
<tr>
<td>33</td>
<td>303,9</td>
<td>50,8</td>
</tr>
<tr>
<td>34</td>
<td>268,9</td>
<td>46,04</td>
</tr>
<tr>
<td>35</td>
<td>245</td>
<td>58,72</td>
</tr>
</tbody>
</table>
Tabel 1 Nilai finansial alternatif proyek (lanjutan)

Keterangan: ij adalah proyek 1 yang mulai dikembangkan pada periode j.

Urutan alternatif proyek di atas menjadi pedoman dalam mengalokasikan sumber kepada proyek-proyek tersebut. Tabel berikut ini menunjukkan pengalokasian sumber terhadap proyek.

Tabel 2 Pemilihan proyek berdasarkan rasio ENPV terhadap standar deviasi NPV

<table>
<thead>
<tr>
<th>Uraian alternatif</th>
<th>Alternatif proyek</th>
<th>ENPV</th>
<th>StDev</th>
<th>ENPV/StDev</th>
<th>Rasio</th>
<th>Alokasi menurut sengaja pada periode</th>
<th>Alokasi tanpa horor pada periode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>11</td>
<td>45.88</td>
<td>0.00</td>
<td>767</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>673</td>
<td>1.18</td>
<td>0.21</td>
<td>404</td>
<td>120</td>
<td>400</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>607.5</td>
<td>1.18</td>
<td>0.21</td>
<td>404</td>
<td>120</td>
<td>400</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>572</td>
<td>0.80</td>
<td>0.00</td>
<td>572</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>549.7</td>
<td>0.51</td>
<td>0.00</td>
<td>549.7</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>777.7</td>
<td>1.18</td>
<td>0.21</td>
<td>777.7</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>606.6</td>
<td>1.18</td>
<td>0.21</td>
<td>606.6</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>606.6</td>
<td>1.18</td>
<td>0.21</td>
<td>606.6</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>572</td>
<td>0.80</td>
<td>0.00</td>
<td>572</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>572</td>
<td>0.80</td>
<td>0.00</td>
<td>572</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>572</td>
<td>0.80</td>
<td>0.00</td>
<td>572</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>572</td>
<td>0.80</td>
<td>0.00</td>
<td>572</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>572</td>
<td>0.80</td>
<td>0.00</td>
<td>572</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>572</td>
<td>0.80</td>
<td>0.00</td>
<td>572</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>572</td>
<td>0.80</td>
<td>0.00</td>
<td>572</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>572</td>
<td>0.80</td>
<td>0.00</td>
<td>572</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>572</td>
<td>0.80</td>
<td>0.00</td>
<td>572</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>572</td>
<td>0.80</td>
<td>0.00</td>
<td>572</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>572</td>
<td>0.80</td>
<td>0.00</td>
<td>572</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>572</td>
<td>0.80</td>
<td>0.00</td>
<td>572</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>572</td>
<td>0.80</td>
<td>0.00</td>
<td>572</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>572</td>
<td>0.80</td>
<td>0.00</td>
<td>572</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>572</td>
<td>0.80</td>
<td>0.00</td>
<td>572</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>572</td>
<td>0.80</td>
<td>0.00</td>
<td>572</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>572</td>
<td>0.80</td>
<td>0.00</td>
<td>572</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>572</td>
<td>0.80</td>
<td>0.00</td>
<td>572</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>572</td>
<td>0.80</td>
<td>0.00</td>
<td>572</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>572</td>
<td>0.80</td>
<td>0.00</td>
<td>572</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>572</td>
<td>0.80</td>
<td>0.00</td>
<td>572</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>572</td>
<td>0.80</td>
<td>0.00</td>
<td>572</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>572</td>
<td>0.80</td>
<td>0.00</td>
<td>572</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>572</td>
<td>0.80</td>
<td>0.00</td>
<td>572</td>
<td>120</td>
<td>50</td>
</tr>
</tbody>
</table>

Berdasarkan urutan prioritas dan pengalokasian sumber tersebut, proyek-proyek yang terpilih untuk dikembangkan adalah sebagai berikut:

Pemilihan Portofolio Proyek Dengan Mempertimbangkan Resiko Finansial

279
• Pilih proyek 1 alternatif 3: dimulai pada periode 3 dalam horison perencanaan.
• Pilih proyek 3 alternatif 2: dimulai pada periode 2 dalam horison perencanaan.
• Pilih proyek 5 alternatif 4: dimulai pada periode 4 dalam horison perencanaan.
• Pilih proyek 7 alternatif 1: dimulai pada periode 1 dalam horison perencanaan.
• Pilih proyek 8 alternatif 1: dimulai pada periode 1 dalam horison perencanaan.

Portofolio proyek tersebut memberikan nilai sebesar 6750.4

7. Penutup

Model finansial yang diintegrasikan dengan analisis resiko dapat membantu pengambil keputusan dalam memilih portofolio proyek berdasarkan rasio antara ENPV dan standar deviasi NPV. Makalah ini baru befokus pada pencapaian nilai finansial yang tinggi, masih dibutuhkan model-model lain untuk membantu dalam pencapaian performansi portofolio lainnya.

Simulasi Monte Carlo yang digunakan hanya menyediakan satu distribusi segitiga dan dapat dikembangkan dengan menyediakan distribusi lain yaitu distribusi betaPERT karena memberikan pemodelan yang lebih fleksibel, dan distribusi trigen karena estimasi nilai minimum dan maksimum pada distribusi ini tidak absolut.

8. Daftar Pustaka