PENGEMBANGAN NEURAL NETWORKS MODEL ADITIF UNTUK PERAMALAN DATA TIME SERIES STASIONER DAN NON STASIONER

Saikhu, Ahmad (2000) PENGEMBANGAN NEURAL NETWORKS MODEL ADITIF UNTUK PERAMALAN DATA TIME SERIES STASIONER DAN NON STASIONER. Proceedings, Komputer dan Sistem Intelijen(KOMMIT2000).

[img]
Preview
Text
PENGEMBANGAN NEURAL NETWORKS MODEL ADITIF UNTUK PERAMALAN DATA TIME SERIES STASIONER DAN NON STASIONER_UG.pdf - Submitted Version

Download (655Kb) | Preview

Abstract

Statistical methods result in less accurate performance when forecasting stationary and non stationary time series data.

Item Type: Article
Uncontrolled Keywords: neural networks; dickey fuller test; additive model; arima;
Subjects: A General Works > AI Indexes (General)
Divisions: Fakultas Teknologi Industri > Program Studi Teknik Informatika
Depositing User: Mr Reza Chandra
Date Deposited: 28 Feb 2014 07:45
Last Modified: 28 Feb 2014 07:45
URI: http://repository.gunadarma.ac.id/id/eprint/986

Actions (login required)

View Item View Item